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Abstract

The dynamics of packets diffusion within a self-organized network is analytically studied by means of an extendedf -spin
kinetic Ising model (Fredrickson–Andersen model) using a Fock-space representation for the master equation. To map the three
component system (active, passive and packet cells) onto a lattice we apply two types of second quantized operators. The active
cells correspond to mobile states whereas the passive cells correspond to immobile states of the Fredrickson–Andersen model.
An inherent cooperativity is included by assuming that the local dynamics and subsequently the local mobilities are restricted
by the occupation of neighboring cells. Depending on a temperature-like parameterh−1 (interconnectivity) the diffusion of the
packet (information) can be almost stopped. Thus we get a separation of the time regimes and transient localization for the
intermediate range at low interconnectivity. 2002 Elsevier Science B.V. All rights reserved.

PACS: 02.50.Ey; 05.20.Dd; 82.20.Mj; 05.50.+q

During the last years there is a huge effort to un-
derstand the kinetics of non-equilibrium phenomena.
A wide range of discrete and continuous models for
such processes is analytically and numerically stud-
ied. The problems of interest in this context concern
the crystal growth, transport (traffic) models, diffusion
processes and supercooled liquids [1–6]. Here, we will
apply the kinetics of the Fredrickson–Andersen model
(FAM) recently discussed in the framework of the
glass transition and related phenomena [5–12]. But we
show that this model may be used on other fields like
stock trading, citation networks, company relations or
internet communications as well [13–16]. In general,
we study the diffusion of information within a net-
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work system of active links and passive/active cells (or
nodes). The switch between a passive and active cell
is controlled by the interconnectivity parameterh−1.
At maximum interconnectivity the system possesses
equal numbers of active and passive cells whereas at
the minimum interconnectivity there are only passive
cells. Furthermore, the alteration is also controlled by
the nearest neighbors. If enough adjacent active cells
exist (more than a fixed numberf ) the active cell
can become passive and vice versa. Thus, only a suf-
ficiently active environment may determine and alter
the state of a cell as in a citation community where
only accepted (active) people may decide about the
worth of an opinion of a member in a related field. To
this network formed by passive/active cells and active
links, consisting of two adjacent active cells, we add
further particles which may be assigned to (informa-
tion) packets. These packets can only diffuse along ac-
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tive links but are confined by passive cells. Therefore,
we have diffusion in a self-organized network where
information may stick (and therefore be localized) at
passive cells or run through a network of active links.
This is the same situation in the network where pas-
sive routers cannot transfer data but data on an active
router should be directed to the next active router. In
the present Letter we demonstrate how one may re-
late this network to the FAM originally formulated for
supercooled liquids where the analysis is based on a
mesoscopic formulation. Hence, one reduces for su-
percooled liquid the degrees of freedom to a smaller
set of relevant observables. However, in the case of our
network model we will immediately start on the meso-
scopic scale (e.g., on the elementary scale of routers
where the macroscopic scale is the total network). The
cell structure enables us to attach to each cellj a local
activity mj where the passive state is realized in case
of mj < m̄ and the active one ifmj > m̄. The quantity
m̄ is a fixed threshold of the system. The threshold is
chosen so that all cells are passive at zero interconnec-
tivity. The number of cells in the active and the passive
state, respectively, need not be conserved. Thus, the
real kinetics is more Glauber-like (non-conserved) dy-
namics. Hence we suppose that the basic dynamics is
a flip process between the active and the passive state.
It is controlled by self-induced topological restrictions
introduced below. This type of dynamics leads to a re-
laxation behavior resembling to that of a cooperative
system. In particular, an elementary switch at a given
cell is allowed only if the number of nearest neighbor
active cells is equal to or larger than a certain num-
ber f , with 0 � f � z (z is the coordination number
of the lattice). Hence, elementary flip processes com-
bined with these restrictions may lead to cooperative
arrangements within the underlying network. A broad
variety of Fredrickson–Andersen models (orf -spin
kinetic Ising models) [7–9] has been studied analyti-
cally [5,6,17] and numerically [10–12,18]. The FAM
can be classified as an Ising-like model for which the
kinetics is limited by restrictions on the ordering of
nearest neighbors to a given lattice cell. These self-
adapting environments especially influence the long-
time behavior of the state relaxation [6,11]. Addition-
ally, here we add packets to the system for which dif-
fusive dynamics are coupled with the existence of the
active states. Therefore, we require that active cells are
necessary for the motion of packets because passive

states block packet diffusion. In other words, data are
fixed and static as long as they are assigned to passive
cells, but information may diffuse through a network
of active cells. In the present work we will incorporate
this feature into the Fock-space representation of the
master equation in order to compute the packet con-
centration in a continuous mean-field approximation.

First, we give a short survey about the Fock-
space method (known as the quantum Hamiltonian
method—more details can be found, e.g., in [3]).
A given state in the lattice system can be characterized
by a set of discrete numbers�n = {ni} (or respectively
�v = {vi}), whereni, vi ∈ {0,1} denote the local state of
a lattice celli. Furthermore, the following convention
is used:ni = 1 (0) refers to the active (passive) state.
The statevi = 1 (0) corresponds to a celli occupied
(non-occupied) by a packet. We start from the one-step
master equation

(1)∂tP
(�n, �v, t) = L′P

(�n, �v, t),
whereP(�n, �v, t) is the probability for a certain config-
uration{�n, �v}. The linear operatorL′, specified by the
dynamics of the system, describes the time evolution.
Then, following [19,20], the probabilitiesP(�n, �v, t)
can be related to the Fock-space state vector|F(t)〉 as
a weight relative to the decomposition into the basis
vectors|�n〉 ⊗ |�v〉 of an orthonormal vector space,

(2)
∣∣F(t)

〉 = ∑
�n,�v

P
(�n, �v, t)∣∣�n〉 ⊗ ∣∣�v〉.

This equation leads to the quantum formulation of the
master equation resulting in

(3)∂t
∣∣F(t)

〉 = L̂
∣∣F(t)

〉
,

whereL′ corresponds to the operatorL̂ in the Fock-
space representation. This procedure was originally
derived for Bose-like systems [19,20] and was later
applied to Fermi-like systems [4,21,22]. Recently, we
proposed a further extension, applying para-Fermi
statistics for differently restricted occupation numbers
[6,23]. The average of a physical quantityG(�n, �v) is
given by the trace over̂G:

(4)
〈
Ĝ(t)

〉 = ∑
�n,�v

P
(�n, �v, t)G(�n, �v) = 〈�r∣∣Ĝ∣∣F(t)

〉
,
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where〈�r| is the reference state related to the basis

(5)
〈�r∣∣ =

∑
�n,�v

〈�n∣∣ ⊗ 〈�v∣∣ =
⊗(

1
1

)
.

The reference state is completely determined by the
basis{|�n〉, |�v〉} of the Fock space and does not depend
on the particular model or the evolution operatorL̂.
The conservation of total probability is manifested by
〈�r |L̂ = 0. Therefore, the equation of motion is given
by

(6)∂t
〈
Ĝ(t)

〉 = 〈�r∣∣ĜL̂
∣∣F(t)

〉 = 〈�r∣∣[Ĝ, L̂
]
−
∣∣F(t)

〉
.

Notice that this dynamical equation depends on both
the algebraic properties of the underlying operators
and the mathematical structure ofL̂. Next, we intro-
duce the second quantized loweringai(vi) and raising
a

†
i (v†

i ) operators, forming the evolution operatorL̂,
to create the basis states|�n〉 (|�v〉) from the vacuum
state |0〉. Both types of (independent of each other
and hence commuting) operators fulfill the relation-
ship (for Paulions)

(7)aia
†
j + a

†
j ai = δi,j + 2a†

j ai(1− δi,j ).

As mentioned above, the inherent properties of the
FAM is the restriction, on the flip dynamics at celli,
σi ↔ −σi ,

(8)
1

2

∑
j (i)

〈nj |(1+ σj )|nj 〉 =
∑
j (i)

〈nj |Âj |nj 〉 � f,

where j (i) denotes the sum over all adjacent cells
of i and f is the restriction number. The number
operatorsÂj and V̂j denotea†

j aj andv
†
j vj as usual.

Concerning the motion of information packets we
postulate diffusive motion of the particles coupled to
the existence of active cells at the initial and final sites.
This exchange process, due to Kawasaki, enhances the
mobility of packets in active neighborhoods whereas
it slows it down inside a passive cluster. Summarizing,
we consider the evolution operators taking the form

L = LF +LE,

LF = +
∑
i

λBA(1− ai)a
†
i

∑
〈m1...mf ,i〉

Âm1 . . . Âmf

+
∑
i

λAB

(
1− a

†
i

)
ai

∑
〈m1...mf ,i〉

Âm1 . . . Âmf ,

(9)

LE = +
∑
〈rs〉

D0
[
v†
r vs − (

1− V̂r

)
V̂s

]
ÂrÂs

+ symmetric term,

where the quantitiesλAB = λ̃exp[h], λBA = λ̃×
exp[−h] and D0 are the kinetic coefficients for the
diffusion process. They are appropriately thermody-
namically weighted to fulfill the detailed balance con-
dition. As mentioned before the parameterh corre-
sponds to the inverse interconnectivity between cells.
The higherh is set the lower is the interconnectivity
of the network. The first term ofLF reflects the flip
process from the passive to the active state whereas
the second term represents the inverse process. The
second part,LE , expresses the exchange processVi +
Vj ↔ Vj +Vi related to the existence of an active link
between adjacent cells. The term

(10)
∑

〈m1...mf ,i〉
Âm1 . . . Âmf

in Eq. (9) represents the kinetic restriction mentioned
above. The abbreviation〈m1 . . .mf , i〉 denotes the
sets of all thef lattice cells neighboring to the celli.
The operatorÂm yields a non-zero value only if the
cell m is active, so that expression (10) differs from
zero if it is applied to a cell surrounded by at leastf

active cells. Using Eq. (4) the temporal evolution of
the two relevant observables〈Âk〉 and〈V̂k〉 results in

∂t
〈
Âk

〉 = λBA

∑
〈m1...mf ,k〉

〈
B̂kÂm1 . . . Âmf

〉

− λAB

∑
〈m1...mf ,k〉

〈
ÂkÂm1 . . . Âmf

〉
,

(11)∂t
〈
V̂k

〉 = 2D
〈∇k

(
Â2

k∇kV̂k

)〉
,

where we exploit the discrete form of the Laplacian

(12)∆kOk = 1

l2

∑
r(k)

(Or −Ok).

The diffusion coefficient is modified toD = D0l
2,

where l is the length of the lattice cell. The current
for the diffusive motion of the packets is given by

(13)j = −2DÂ2
k∇kV̂k.

It is intuitively obvious that the effective diffusion co-
efficient should depend on the squared concentration
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of the active cells, and therefore on the number of ac-
tive links.

Now we consider a solution of the hierarchy of
equations by decoupling all average values in a mean-
field approximation. Such an approach seems to be
justified because we are interested in the long time
limit, whereas all the elementary processes are real-
ized on a more microscopic scale. Due to the fact that
the formula for the vacancies concerns a single lattice
index, we may neglect it. Then, we obtain for the evo-
lution equation of the packets

(14)∂t
〈
V (t)

〉 = 2D∇[〈
A(t)

〉2∇〈
V (t)

〉]
,

whereas the equation of motion for the active state
yields

∂t
〈
A(t)

〉 = λBAζ
〈
1−A(t)

〉〈
A(t)

〉f
(15)− λABζ

〈
A(t)

〉f+1
.

The temporal solution of Eq. (15) is easily found to be

(16)
〈
A(t)

〉 = Ā+ [
A(0)− Ā

]
exp

(
− t

τ1

)

with the initial valueA(0) and the steady state solution

(17)Ā = λBA

λAB + λBA

= 1

exp(2h)+ 1
.

As the inverse relaxation time of the flip process we
find

(18)τ−1
1 = (λBA + λAB)ζ Ā

f

with ζ = z · . . . · (f + 1). Notice that the steady state
solution in the mean-field approximation is the same
as the solution for the paramagnetic lattice gas and
is independent off . In contrast, the relaxation time
depends onĀf . Because the dynamics of the packets
is globally conserved the steady solution is fixed for
all time by the initial distribution, i.e.,

(19)V̄ =
∫
V (x,0) dx∫

dx
.

Making a linear stability analysis we get from Eqs.
(14) and (15)

∂t

(
δA(�q, t)
δV (�q, t)

)

(20)= −
(
τ−1

1 0
0 2DĀ2q2

)(
δA(�q, t)
δV (�q, t)

)
,

where δA(�q, t) and δV (�q, t) are the Fourier trans-
formed small fluctuations around the steady-state val-
uesĀ andV̄ . The divergence of the second relaxation
time τ−1

2 = 2DĀ2q2 at the wave number�q = �0 re-
flects the global conservation of the information in our
network. Due to the quadratic dependence onĀ the
relaxation timeτ2 rapidly increases if the active cells
become passive. Obviously, the steady state is sta-
ble against perturbations, as indicated by the negative
sign. To gain more insight into the diffusion process
for information associated with packets we consider
its evolution equation (14) by applying the mean-field
solution as for the active state (16). This leads to a
spatial-independent, but time-dependent effective dif-
fusion coefficient with

∂t
〈
V (t)

〉 = 2D

[
Ā+ (

A(0)− Ā
)
exp

(
− t

τ1

)]2

(21)× ∇2〈V (t)
〉
.

A measure for the fluctuations of the packet concen-
tration is given by

F(t) =
t∫

0

〈
A(t ′)

〉2
dt

= Ā2t + 2τ1Ā
(
A(0)− Ā

)(
1− e−t/τ1

)
(22)+ τ1

2

(
A(0)− Ā

)2(1− e−2t/τ1
)
.

Studying the asymptotic limits ofF(t) we recognize
different temporal regimes. Whereas for small times
the fluctuations are dominated by the initial values of
the active cellsF(t) ∼ A2(0)t , the fluctuations are ap-
proximated byF(t) ∼ Ā2t for long times. Although
the fluctuations go to infinity in the long-time limit (in
this mean-field theory) there is transient localization
in an intermediate temporal range especially for small
interconnectivity, which is depicted in Fig. 1. Only a
small portion of cells is active (̄A � (A(0)− Ā)) in-
hibiting the diffusion process. The exponential func-
tions in the second and the third terms in Eq. (22) are
negligible so that the fluctuationF(t) remains almost
constant. To see if there is transient localization one
must compare the relaxation timeτ in Eq. (18) and
the time scaletL, where the first term is equal the sec-
ond, and the third term in Eq. (22). In this connection,
we assume that the exponential functions may be ne-
glected. The timetL associated with this point is (sup-
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Fig. 1. The fluctuation measureF(t) for the interconnectivitiesh−1 = 0.5 (solid line), 1 (dashed line) and 2 (dotted line) as function of the
time t (D = 1, f = 1 andA(0) = 1/2).

Fig. 2. The transition timetL in comparison to the relaxation timeτ1 as functions of the inverse interconnectivityh (D = 1, f = 1 and
A(0) = 1/2).

posingA(0) > Ā)

(23)tL = τ1

2

[(
A(0)

Ā

)2

− 1

]
.

Obviously, the crossover to localization (tL � τ1)
becomes possible only if the concentrationĀ is small
enough (sufficient low interconnectivity) over the time
interval τ1 < t < tL, see Fig. 2. A rough estimation
yields the ratio

(24)
tL

τ1
∼ exp(4h).

Further, we may useF(t) to transform the partial time
derivative in the evolution equation

(25)
∂

∂t
= dF(t)

dt

∂

∂F (t)
= 〈

A(t)
〉2 ∂

∂F (t)
,

and hence obtain the ordinary diffusion equation

∂〈V (t)〉
∂F (t)

= 2D∇2〈V (t)
〉
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Fig. 3. The diffusion of the packages concentration in the restricted network model (upper “localized” white graph) in comparison to the
ordinary diffusion process (lower gray graph) embedded in one dimension (D = 1, f = 1 andA(0) = 1/2).

by applying the transformed Eq. (14)

∂〈V (t)〉
∂t

= 〈
A(t)

〉2∂〈V (t)〉
∂F (t)

(26)= 2D
〈
A(t)

〉2∇2〈V (t)
〉
.

If we now start with a δ-distributed information
(packet) density, i.e., place the information at one
point and observe how it will be distributed in time,

(27)V
(�x,0

) = V̄ δ
(�x)

,

we get the result of Eq. (14):

(28)V
(�x, t) = 1

(4πDF(t))d/2
exp

( �x2

4πDF(t)

)
.

Hence, the behavior ofF(t) directly influences the
diffusion of the information. IfF(t) remains almost
constant in time the diffusion process and therefore
the distribution of the information stops, and the data
packets are localized, see Fig. 3.

In our extended kinetic Ising model we find tran-
sient localization due to the coupling of the diffusive
dynamics for data packets with the existence of active
cells at sufficiently low connectivity. Because there
are small portions of the cells in this case, the dif-
fusion almost stops. Therefore, the packets are fixed
at or near their initial position, and information can-
not be widespread. Thus, we may distinguish two time

regimes. First of all the fast active–passive state re-
laxation takes place. The higher the restriction num-
berf the more the relaxation time slows down (com-
pare Eq. (18)). Then after a while, the influence of
the (slow) diffusion is effective and it equilibrates the
packet concentration in the total system. However, for
high enough interconnectivity there are enough ac-
tive cells so that the diffusion can speed the equi-
libration and information can easily spread through
the network. The mean field approximation for the
Fredrickson–Andersen model [24] may provide false
results. The mean-field solution leads to a dynamics
which completely breaks down below a critical in-
terconnectivity. That means below a critical intercon-
nectivity information would spread through a fixed
network like through a sponge (Bond percolation re-
sults would apply to this case; see, e.g., [25]). Here,
we exploit a more sophisticated approximation, tak-
ing local processes into account. But we expect that
the transient localization found leads to permanent lo-
calization at low interconnectivity iff > z. In this
case stable clusters of passive cells exist at any inter-
connectivity in contrast to the casef � z where all
cells can be activated [24]. To prove this, we refer
the reader to a theorem of van Enter [26] describing
a bootstrap percolation model [27] (or diffusion per-
colation [28]).
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