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Thermodynamics of an extended Fredrickson-Andersen model
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~Received 27 October 1998!

We describe an extension of the Fredrickson-Andersen model~or n-spin facilitated kinetic Ising model!
which exhibits a transition similar to a glass transition. Our extension incorporates long-range effects. Exact or
numerically accurate results are obtained only for one dimension, but most conclusions apply more generally.
The model exhibits a discontinuous drop in the specific heat as it is cooled through the transition temperature.
This leads to an excess internal energy and a residual entropy at zero temperature. The disorder associated with
the residual entropy can be seen in diffuse scattering which is characteristic of disordered systems.
@S1063-651X~99!07303-1#

PACS number~s!: 05.50.1q, 82.20.Mj, 64.70.Pf
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I. INTRODUCTION

Despite advances in the description of glasses, su
cooled liquids, and the glass transition by means of a var
of approaches, there is a lack of complete understandin
the phenomenon@1–7#. Strictly speaking, glasses are not
thermal equilibrium. The glass transition is not a stand
phase transition and is not connected with the developm
of long-range order. The dynamics of supercooled liqu
shows a slowing down due to cooperative motions. Withi
narrow temperature range around the transition tempera
Tg , the dynamics become so slow that thermal equilibri
cannot be observed by an experiment. Despite this b
problem, measurements of a glass’s thermal properties~like
the specific heat! on the slowest possible time scales yiel
quasithermodynamic properties of that glass.

Insight into some aspects of the glass transition is
tained from the spin-facilitated kinetic Ising model, intr
duced by Fredrickson and Andersen@8–11#. In order to re-
duce the degrees of freedom they carried out a co
graining on both time and length scales. Therefore the s
tem is separated into a virtual lattice of mesoscopic ce
each containing a sufficiently large number of microsco
particles. This model has been the subject of several num
cal @12–17# and analytical studies@18–20#. The model
shows a dramatic slowing of the dynamics at low tempe
tures. This slowing occurs because nearest-neighbor inte
tions between lattice sites can inhibit the change of state
lattice site and therefore interactions can restrict the ph
space of all possible configurations. Here, we suggest an
tension of the usual Fredrickson-Andersen model wh
thermodynamic properties may approximate the thermo
namic properties of glasses. Our extension of
Fredrickson-Andersen model postulates that both nea
neighbor and long-ranged effects are needed to inhibit
change of state at a lattice site. To simplify the calculati
the long-ranged effects are taken to be of infinite range
they can be described using mean-field theory. The phy
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of our model is illustrated for a one-dimensional lattic
where many exact results can be obtained. Many qualita
aspects of our one-dimensional results remain valid for th
dimensions.

Section II summarizes the Fredrickson-Andersen mod
Section III describes a mean-field solution of th
Fredrickson-Andersen model. Section IV presents our mo
fied model and its solution in one dimension. Section V ge
eralizes the conclusions.

II. FREDRICKSON-ANDERSEN MODEL

The Fredrickson-Andersen model associates each me
copic cell of a glass with an Ising spin on a lattice. If th
local density is higher~lower! than a reference density, th
associated spin is down~up!. The spin-up sites are fluidlike
and the spin-down sites are solidlike. The thermal equi
rium probabilities for a site being spin up,p, or spin down,q,
are

p512q5
exp~2bh!

2 cosh~bh!
, ~1!

where b is the inverse temperature andh and 2h are the
effective energies of the liquidlike and the solidlike cells.

Thermal equilibrium of this kinetic model is approache
through individual spin flips. A spin-up site flips to a spin
down site at a rater 2 . The spin-flip rate for the revers
process isr 1 . The temperature dependent spin-flip rates s
isfy the condition of detailed balance, so

qr15pr2 . ~2!

Thermal equilibrium will be achieved as long as the sp
flip rates (r 6) do not vanish. However, the glasslike beha
ior and thermodynamic ambiguity of the Fredrickso
Andersen model is achieved by allowing some spin-flip ra
to vanish. This slows~and perhaps stops! the approach to
thermal equilibrium.

The core of the Fredrickson-Andersen model is the cr
rion which determines the nonzero spin-flip rates. Letn i be
the number of spin-up sites which are nearest neighbor
3196 ©1999 The American Physical Society
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site i. The Fredrickson-Andersen model postulates that
spin at sitei can change orientation (r 6Þ0) only if

n i>nFA , ~3!

wherenFA with 0<nFA<z ~z is the coordination number! is
an integer parameter of the model. Sites which are allowe
change their spin direction are ‘‘mobile’’ while spins whic
cannot flip are ‘‘immobile.’’ Since a spin flip at sitej
changesn i at all sitesi neighboring sitej, mobile spins can
become immobile and immobile spins can become mobi

The true thermodynamic properties of the Fredricks
Andersen model do not describe a glass transition. We il
trate this thermodynamic limitation for a square lattice wh
z is 4. For this case, ifnFA is 3 or 4, rectangular spin-dow
regions of the lattice are permanent and cannot change a
temperature. This is not reasonable since initial conditi
determine the possible configurations for all future tim
~‘‘Configuration’’ denotes the orientation of a set of spins!
However, ifnFA is 0, 1, or 2, the thermodynamic propertie
are those of a set of free spins. To prove this result, one
apply~with notational modifications! the theorem by van En
ter @21# which describes accessible states in a related clas
models called ‘‘bootstrap percolation’’@22# ~or ‘‘diffusion
percolation’’ @23#!. The van Enter theorem applied to th
Fredrickson-Andersen square lattice fornFA52 ~the only in-
teresting case! shows that sequences of spin flips at mob
sites connect essentially all possible spin configurations. F
thermore, we have generalized this theorem to show tha
energy fluctuation needed to flip essentially any spin is fin
@Formally, given anye.0 and a random distribution o
spins with spin-up probabilityp.0, an arbitrary spin can be
flipped with a probability greater than 12e by a finite en-
ergy fluctuationE(e,p).# Thus the partition function mus
include essentially all spin configurations, and the thermo
namics are unaffected by the spin-flip restriction whennFA
52. Of course, whenp is small, the energy fluctuation
needed to flip spins can be so large that relaxation tim
would be too long to be observed. In this sense
Fredrickson-Anderson model may afford a realistic desc
tion of glasses. We are only noting that the formally deriv
exact thermodynamic properties of this model will not d
scribe the quasithermodynamics of glasses. Generalizatio
these comments applies to the Fredrickson-Andersen m
on other lattices and for three dimensions.

III. MEAN-FIELD THEORY

We apply the simplest possible version of a mean-fi
theory to the Fredrickson-Andersen model by replacing
number of spin-up neighbors of sitei @n i of Eq. ~3!# by its
average over all the sites, calledn̄. In thermal equilibrium

n̄5zp, ~4!

with p given by Eq.~1!. Since every site is characterized b
the samen̄, a phase transition takes place at a critical spin
probability

pc
MF5nFA /z. ~5!

Solving Eq.~1! for T gives
e
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5b5

1

2h
lnS 12p

p D ~6!

so if pc
MF,1/2 andh.0, the corresponding mean field tran

sition temperatureTc
MF is positive and finite. Above the tran

sition temperature, the system has the properties of a se
free spins, since every spin is mobile. However, cooling
low Tc

MF cannot lower the energy or the entropy because
spin-flip rates vanish forp,pc

MF .
This mean-field model restricts the spin configurations

those in which the fraction of spin-up sites is at leastpc
MF .

The thermodynamic properties of this model with a restric
configuration space are unusual. The ground state is hig
degenerate. This means the ‘‘third law’’ of thermodynam
is violated, and there is a residual nonzero entropy eve
zero temperature. Also, since the system’s internal ene
approaches the lowest allowed energy atTc

MF , the heat ca-
pacity vanishes at temperatures belowTc

MF .
Mean-field theory becomes accurate in the limit of lon

ranged interactions. Thus one might expect a fairly sh
glass transition for a long-ranged generalization of
Fredrickson-Andersen model. Long-ranged influences
play an important role in real glasses because topolog
requirements associated with partial ordering are effectiv
long ranged.

Mean-field theory also becomes accurate in the limit
large dimensionality. In the infinite-dimensional limit, whe
z→`, the mean-field results become exact.

IV. EXTENDED FREDRICKSON-ANDERSEN MODEL

Even when long-ranged effects are significant, the sim
mean-field theory described above would be an inadeq
approximation. It does not properly describe effects ass
ated with the dominant short-ranged interactions. The
tended Fredrickson-Andersen model described here assu
both long-ranged and short-ranged effects control the s
flip rates. The long-ranged interaction is treated in the sp
of mean-field theory, but the short-ranged part is included
the mesoscopic scale.

The extended Fredrickson-Andersen model is charac
ized as follows.

~1! Each spin is either ‘‘immobile’’ or ‘‘mobile,’’ with
no spin flips for the immobile spins and detailed balan
determining the ratios of the spin-flip rates for the mob
spins.

~2! As with the original Fredrickson-Andersen model,
spin is mobile if it is embedded in a sufficiently large co
centration of spin-up sites. However, these spin-up sites
be either nearest neighbors or distant neighbors. Thus a
is mobile if either ~A! The spin is adjacent to at leastnFA
spin-up sitesor ~B! the number density of spin-up sites
greater than a fixed critical densitypc .

This extended Fredrickson-Andersen model has two
rameters; the integernFA for nearest neighbors and long
ranged criterionpc . Unlike the mean-field treatment of th
Fredrickson-Andersen model, these parameters are inde
dent and they are not related by Eq.~5!.

The long-range part of this model@property 2~B!# means a
glass transition is possible. At temperatures such t
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p.pc , there is no restriction of the dynamics. Whenp
,pc some of the spins will be static because of the sh
range condition@property 2~A!#. If nFA is chosen to be suf
ficiently large, the restricted dynamics at low temperatu
will restrict the number of possible configurations and w
alter the thermodynamics.

One dimension

Simple results for the extended Fredrickson-Ander
model can be obtained on a one-dimensional lattice. IfnFA
51 ~or 0! the thermodynamics for this model are the same
for free spins, so we consider only the casenFA52. For T
,Tc andnFA52, the one-dimensional chain of spins is sep
rated into ‘‘frozen’’ and ‘‘melted’’ segments, as is illustrate
in Fig. 1. These segments are determined by the config
tion of the system as it cools through the transition tempe
ture. Spins in the frozen segments are permanently immo
~as long asT,Tc). The spins in the melted segments may
either mobile or immobile. However, allowed spin flips c
‘‘free up’’ an immobile spin, so no spin in a melted segme
is permanently immobile. The mobile spins in the melt
segment are labeled with an asterisk in Fig. 1. Spin confi
rations in each melted segment are restricted to a subs
all possible configurations. Within this subset, thermal eq
librium is obtained. Since frozen segments are perman
below Tc , temperature variations of the thermal propert
are determined by the melted segments.

A melted segment is characterized by its lengthn. Let
npn be the probability that a random site will lie in a melte
segment of lengthn. For a one-spin melted segment

p15pc
2qc

4. ~7!

In Eq. ~7!, pc
2 represents the probability that the sing

melted spin is surrounded by two spin-up sites@as required
by property 2~A! whennFA52#. Theqc

4 represents the prob
ability that both these neighboring spins are adjacent t
pair of down spins, which is required for them to be in froz
segments. Similarly, the probability of finding a melted se
ment of length 2 is

p25~pc
212pcqc!p1 ~8!

because the two mobile spins can only be in the configu
tions ‘‘up-up,’’ ‘‘up-down,’’ or ‘‘down-up.’’

To facilitate our calculation of the internal energy, w
write

pn5pc
2qc

4cn~pc ,qc! ~9!

FIG. 1. A spin chain with frozen and melted parts. Mobile sp
are highlighted with *.
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and insist thatcn(p,q) be treated formally as a function o
two independent variables,p andq, even though physically
p1q51. Forn51,2 we pick

c1~p,q!5p1q, ~10!

c2~p,q!5p212pq. ~11!

For longer segments, thecn(p,q) are obtained from a recur
sion relation which is a generalization of the recursion re
tion for the Fibonacci numbers;

cn11~p,q!5pcn~p,q!1pqcn21~p,q!. ~12!

This generates thepn because for a portion of a melted se
ment of lengthn, the n11 lattice site will also be in that
melted segment if it is spin up~probability pc). However, if
then11 site is spin down~probabilityqc), it will be part of
the melted segment if a spin-up site and then a spin-do
site is added to the segment of lengthn21.

To obtaincn(p,q) for any n, one can write the recursion
relations for thecn(p,q) in matrix form

S cn11

cn
D5S p pq

1 0 D S cn

cn21
D . ~13!

Eigenvalues of the matrix are

g65
p

2
6F S p

2D 2

1pqG1/2

. ~14!

Thecn(p,q) must be a sum of powers of these eigenvalu

cn~p,q!5ag1
n211bg2

n21. ~15!

The coefficientsa and b are obtained using Eqs.~10! and
~11! for c1(p,q) andc2(p,q), yielding

cn~p,q!5~p1q!S g1
n211g2

n21

2 D
1S p213pq

2 D S g1
n212g2

n21

g12g2
D . ~16!

The functionscn(p,q) yield more than thepn . All the
statistics of the melted segments can be expressed in term
these functions. Each term in thecn(p,q) polynomial corre-
sponds to a different spin configuration. For examp
c2(p,q)5p212pq means the melted segment of length
has one configuration with two spins up~the p2 term! and
two configurations with one spin up and one spin down~the
2pq term!.

Knowledge of thecn(p,q) allows us to calculate the ther
modynamic properties of this one-dimensional system. T
probability that a site is in a melted segment is obtain
using Eq.~9!

Pmelt5 (
n51

`

npn5pc
2qc

4(
n51

`

ncn~pc ,qc!. ~17!
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The form for thecn(p,q) given in Eq.~16! meansPmelt can
be obtained simply by summing geometric series and sim
fying usingpc1qc51. The result,

Pmelt5pc
2~113pc24pc

21pc
3!, ~18!

is shown as a function ofpc as one of the curves in Fig. 3
We obtain next the internal energy~per site! and the spe-

cific heat. These quantities give physical insight into t
properties of this model and its possible relevance to
materials. At temperatures equal to and above the trans
temperature, the internal energy and heat capacity desc
free spins. Below the transition temperature, only the me
segments contribute to changes in the internal energy and
specific heat. Thus we need only consider the tempera
dependence of the melted segment contribution to the in
nal energy, which is

U~T!melt5 (
n51

`

pnun~T!, ~19!

where the internal energy of a melted segment of lengthn is

un~T!5h
1

cn~p,q! S p
]

]p
2q

]

]qDcn~p,q! ~20!

because the differentiations ‘‘count’’ the number of spin-
and spin-down sites. For example, using Eq.~20! and p1q
51 givesu1(T)5h(p2q) and u2(T)5h(2p2)/(p212pq)
as one expects. The sums needed to obtainU(T)melt must be
done numerically. They converge quickly, and Fig. 2 sho
the temperature dependence of the internal energy fopc
50 ~free spins! and forpc50.2, 0.3, 0.4. The correspondin
specific heatsC(T)5dU(T)/dT are shown in the inset. As
one can see in Fig. 2, the suppression of spin flips dram
cally reduces the specific heat below the glass transition

Associated with the lower specific heat is an excess in
nal energy atT50, represented by the difference betwe
the internal energy of the model and the internal energy

FIG. 2. The internal energyU and the heat capacityC for a
free-spin chain and forpc50.2,0.3,0.4.
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the free spins. Because the change in the free-spin inte
energy from the transition temperature to zero temperatur
22hpc ,

Uexcess52hpc2@U~Tc!melt2U~0!melt#.

The excess internal energy can be evaluated exactly. U
Eq. ~19!,

U~Tc!melt52hpc
2~125pc14pc

21pc
3!. ~21!

For T50, the configuration restrictions for melted segme
means thatun(0)52h for odd n andun(0)50 for evenn.
Thus

U~0!melt52h (
n5odd.0

`

pn . ~22!

Simplifying gives

U~0!melt52h
pc

2qc
2

11pc
2 ~12pcqc

2!. ~23!

The pc dependence ofUexcessobtained using the above fou
equations is shown in Fig. 3.

There is also a residual zero-temperature entropy,S(0),
which is associated with the disorder which is frozen into
system. It can be evaluated starting from

S~T!5S~Tc!2@S~Tc!melt2S~T!melt#. ~24!

To find S(0), two of the terms in Eq.~24! can be found
exactly

S~Tc!52~pc ln pc1qc ln qc! ~25!

and because segments with an even number of sites ha
doubly degenerate ground state,

FIG. 3. The probability for a spin to be within a melted secti
Pmelt , the excess internal energyUexcess/h, the scattering ratioD,
and the residual entropyS(0) as functions ofpc .
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S~0!melt5 ln~2! (
n5even.0

`

p~n!

5 ln~2!
p3q2~222p12p22p3!

~11p2!
. ~26!

The melted-segment contribution to the entropy atTc can be
obtained numerically in a variety of ways. We used

S~T!melt52
dF

dT
, ~27!

where the free energy function for the melted segments

F52T(
n51

`

pn ln Zn ~28!

and the partition function for each chain segment is

Zn5~ebh1e2bh!ncn~p,q!. ~29!

The residual entropy obtained from these expression
shown as a function ofpc in Fig. 3. The entropy expressio
in Eq. ~24! implies a continuous entropy function even at t
transition temperatureTc . This means we have assume
there is no ‘‘collapse’’ of the system at the transition te
perature. Such a collapse would occur if the positions of
frozen and melted segments were specified. The entrop
continuous because all allowed partitions of the spin ch
into frozen and melted segments is included in the coun
of configurations. By assuming the system is the sum of
possible configurations, this model is translationally inva
ant even belowTc .

Despite the formal translational invariance, the extend
Fredrickson-Andersen model is disordered in the sense th
leads to diffuse elastic scattering. The diffuse scattering
curs because the model has a complicated spin-spin cor
tion function,^s is j&, wheres i is the spin variable for sitei,
s511 corresponds to spin up,s521 corresponds to spin
down, and^ & denotes a thermodynamic average. The to
scattering probability is the sum of a forward~or Bragg!
scattering part and a diffuse scattering part. The total sca
ing probability is proportional tôs2&, where the ‘‘bar’’ in-
dicates an average over all lattice sites. Assuming the s
tering amplitude from a site is proportional tos, the forward
scattering probability is proportional tôs̄&2. Letting D de-
note the ratio of the diffuse scattering to the total scatteri
and noting thats251,

D512
^s̄&2

^s2&
512S U~T!

h
D 2

. ~30!
i-
D
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At high temperatures, the diffuse scattering fractionD is
caused by thermal fluctuations. If all the spins could align
low temperatures,2U/h would be unity and the diffuse
scattering fraction would vanish. Since the lowest value
the internal energy is2h1Uexcessthe diffuse scattering doe
not vanish even whenT→0. This zero-temperature diffus
scattering is not associated with thermal fluctuations. Inste
it is caused by the disorderlike correlations which are froz
into the lattice. The diffuse scattering fraction is shown a
function pc in Fig. 3.

V. GENERALIZATION

Many of our results obtained in one dimension app
more generally. In particular, the modified Fredrickso
Anderson model yields a similar phase transition withTc
given by Eq.~6! on a square lattice~with nFA is 3 or 4! or a
cubic lattice~with nFA54, 5, or 6!. For T,Tc on the square
or cubic lattices, there is a reduced specific heat. This le
to an excess internal energy atT50 ~compared to free
spins!. Associated with the reduced specific heat is a resid
entropy atT50 given by Eq.~24!. There is also a diffuse
scattering fraction given by Eq.~30!. Unfortunately, numeri-
cal estimates for these quantities are not easy to obtain in
or three dimensions.

The phase transitions described here are all associ
with mean-field theory or~equivalently! infinite-ranged ef-
fects or~equivalently! infinite dimensions. It is logical to ask
if there are reasonable finite-ranged models which wo
lead to physically reasonable glasslike thermodynamic pr
erties.

Note added in proof.We wish to thank Professor Michae
Schultz for a critical reading of this manuscript. Dr. Schu
has urged us to remind readers that our calculations desc
a simple solvable model—not a real glass. Although
model was constructed with glass and the glass transitio
mind, unavoidable simplifications mean true glasses exh
more complex and varied properties than are described
our model. Relaxation time scales have not been addre
in our solutions. The sharp transition temperature of o
model bears only an approximate relation to experiment
observed glass transitions.
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