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Thermodynamics of an extended Fredrickson-Andersen model
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We describe an extension of the Fredrickson-Andersen m@iet-spin facilitated kinetic Ising modgl
which exhibits a transition similar to a glass transition. Our extension incorporates long-range effects. Exact or
numerically accurate results are obtained only for one dimension, but most conclusions apply more generally.
The model exhibits a discontinuous drop in the specific heat as it is cooled through the transition temperature.
This leads to an excess internal energy and a residual entropy at zero temperature. The disorder associated with
the residual entropy can be seen in diffuse scattering which is characteristic of disordered systems.
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PACS numbes): 05.50:+q, 82.20.Mj, 64.70.Pf

[. INTRODUCTION of our model is illustrated for a one-dimensional lattice,
where many exact results can be obtained. Many qualitative
Despite advances in the description of glasses, supegspects of our one-dimensional results remain valid for three
cooled liquids, and the glass transition by means of a varietgimensions.
of approaches, there is a lack of complete understanding of Section Il summarizes the Fredrickson-Andersen model.
the phenomenofl—7]. Strictly speaking, glasses are not in Section Il describes a mean-field solution of the
thermal equilibrium. The glass transition is not a standard-redrickson-Andersen model. Section IV presents our modi-
phase transition and is not connected with the developmerited model and its solution in one dimension. Section V gen-
of long-range order. The dynamics of supercooled liquidseralizes the conclusions.
shows a slowing down due to cooperative motions. Within a
narrow temperature range around the transition temperature Il. FREDRICKSON-ANDERSEN MODEL
T4, the dynamics become so slow that thermal equilibrium . .
cannot be observed by an experiment. Despite this basic T_he Fredrlckson-Ano_Iersen m_odel associates e_ach Mesos-
problem, measurements of a glass's thermal propetiles copic cell of a glass with an Ising spin on a lattice. If the

the specific heaton the slowest possible time scales yieldsIOCaI Qens(,jity i.S higEe(lower)TtEan a refere_nce den;itydllr(he
guasithermodynamic properties of that glass. associated spin is dowup). The spin-up sites are fluidiike

Insight into some aspects of the glass transition is obfr’?nd the spir_yc_;lown S‘te$ are _solidli_ke. The th_ermal equilib-
tained from the spin-facilitated kinetic Ising model, intro- UM probabilities for a site being spin up, or spin downg,

duced by Fredrickson and Andersgg+11]. In order to re-
duce the degrees of freedom they carried out a coarse expl( — Bh)
graining on both time and length scales. Therefore the sys- p=1-q=————,
tem is separated into a virtual lattice of mesoscopic cells, 2 costiph)
each containing a sufficiently large number of microscopi
particles. This model has been the subject of several num

@

CWhereﬁ is the inverse temperature amdand —h are the
Elttfective energies of the liquidlike and the solidlike cells.

Cﬁl [12_? and ar;aly_tical fst;:di(e;s{lS—_ZQ. TTe mode| Thermal equilibrium of this kinetic model is approached
shows a dramatic slowing of the dynamics at low te”_”[)er":lfhrough individual spin flips. A spin-up site flips to a spin-
tures. This slowing occurs because nearest-neighbor interage site at a rate . The spin-flip rate for the reverse

: ' . phas; fy the condition of detailed balance, so
space of all possible configurations. Here, we suggest an ex-
tension of the usual Fredrickson-Andersen model whose qr.=pr_. 2)
thermodynamic properties may approximate the thermody-
namic properties of glasses. Our extension of the Thermal equilibrium will be achieved as long as the spin-
Fredrickson-Andersen model postulates that both nearestp rates (..) do not vanish. However, the glasslike behav-
neighbor and long-ranged effects are needed to inhibit theor and thermodynamic ambiguity of the Fredrickson-
change of state at a lattice site. To simplify the calculation Andersen model is achieved by allowing some spin-flip rates
the long-ranged effects are taken to be of infinite range, sto vanish. This slowgand perhaps stopghe approach to
they can be described using mean-field theory. The physiahermal equilibrium.
The core of the Fredrickson-Andersen model is the crite-
rion which determines the nonzero spin-flip rates. Lebe
*Electronic address: pigorsch@physik.uni-halle.de the number of spin-up sites which are nearest neighbors to
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site i. The Fredrickson-Andersen model postulates that the 1 1 1-p
spin at sitei can change orientatiorr { #0) only if ?:ﬁ:ﬁln(T) (6)
Vi=Ngp, 3)

so if p¥F<1/2 andh>0, the corresponding mean field tran-
whereng, with 0<ng,<z (zis the coordination numbgis  sition temperatur@™" is positive and finite. Above the tran-
an integer parameter of the model. Sites which are allowed teition temperature, the system has the properties of a set of
change their spin direction are “mobile” while spins which free spins, since every spin is mobile. However, cooling be-
cannot flip are “immobile.” Since a spin flip at sit¢  low TYF cannot lower the energy or the entropy because all
changesy; at all sitesi neighboring sitg, mobile spins can spin-flip rates vanish fop< pgf'F_
become immobile and immobile spins can become mobile.  This mean-field model restricts the spin configurations to

The true thermodynamic properties of the Fredricksonngse in which the fraction of spin-up sites is at lepl¥f .

Andersen model do not describe a glass transition. We illusthe thermodynamic properties of this model with a restricted
trate this thermodynamic limitation for a square lattice whereconfiguration space are unusual. The ground state is highly
zis 4. For this case, ifg, is 3 or 4, rectangular spin-down gegenerate. This means the “third law” of thermodynamics
regions of the lattice are permanent and cannot change at agy yiplated, and there is a residual nonzero entropy even at

temperature. This is not reasonable since initial conditionggrq temperature. Also, since the system’s internal energy

determ_ine the possible configu_ration_s for all future times'approaches the lowest allowed energyr¥f, the heat ca-
(“Configuration” denotes the orientation of a set of spjns.

. . . .>' pacity vanishes at temperatures belﬁW .
5 )b 2, e ooy poperes Mean-ield theory becames acaurate i the i of g
apply (with notational modificationsthe theorem by van En- gnged interactions. Thus one might expect a fairly sharp

. ; ) . ass transition for a long-ranged generalization of the
ter [21] which d(‘a‘scnbes accessmle.sta}tes |na‘r‘e|.ated_ class @ edrickson-Andersen model. Long-ranged influences can
models called “bootstrap percolation[22] (or “diffusion

L . play an important role in real glasses because topological
E?ertcj?ilglils?:n ,E\znsgzr;—ehnes\éigreET;i:c;h?qTin; gﬁglgﬂyt?n the requirements associated with partial ordering are effectively
- = -

tgresting cas)eshows. that sequences Of spin f_Iips a_t mOb”elonl\%légrr:?ﬁe;IId theory also becomes accurate in the limit of
sites connect essentially aII.possﬂqu spin configurations. Furl?arge dimensionality. In the infinite-dimensional limit, where
thermore, we have generallzeq this theprem to shpvv_ that_t o the mean-field results become exact.

energy fluctuation needed to flip essentially any spin is finite. '

[Formally, given anye>0 and a random distribution of

spins with spin-up probabilitp> 0, an arbitrary spin can be IV. EXTENDED FREDRICKSON-ANDERSEN MODEL

flipped with a probability greater than-ie by a finite en- Even when long-ranged effects are significant, the simple

ergy fluctuationE(e,p).] Thus the partition function must , ) .
include essentially all spin configurations, and the thermody-mean'f'eld theory described above would be an inadequate

namics are unaffected by the spin-flip restriction wieg approximation. It d(_)es not properly de_scrlbe e_ffects associ-
_ " . ated with the dominant short-ranged interactions. The ex-
=2. Of course, wherp is small, the energy fluctuation

. . . . tended Fredrickson-Andersen model described here assumes
needed to flip spins can be so large that relaxation tlmeB .
oth long-ranged and short-ranged effects control the spin-

would be too long to be observed. In this sense the;. ) s . .
Fredrickson-Anderson model may afford a realistic descrip?“p rates. The long-ranged interaction is treated in the spirit

tion of glasses. We are only noting that the formally derlvedOf mean-field theory, but the short-ranged part is included on
exact thermodynamic properties of this model will not de the mesoscopic scale.

. y propert . The extended Fredrickson-Andersen model is character-
scribe the quasithermodynamics of glasses. Generalization of

. . ized as follows.
these comments applies to the Fredrickson-Andersen mode Lo I . S
) . . (1) Each spin is either “immobile” or “mobile,” with
on other lattices and for three dimensions. e . . . )
no spin flips for the immobile spins and detailed balance

determining the ratios of the spin-flip rates for the mobile
lll. MEAN-FIELD THEORY Spins.
We apply the simplest possible version of a mean-field (2) As with the original Fredrickson-Andersen model, a
theory to the Fredrickson-Andersen model by replacing th&Pin is mobile if it is embedded in a sufficiently large con-
number of spin-up neighbors of sitdv; of Eq. (3)] by its  centration of spin-up sites. However, these spin-up sites can

average over all the sites, called In thermal equilibrium P €ither nearest neighbors or distant neighbors. Thus a spin
is mobile if either (A) The spin is adjacent to at leasg,

v=2zp, (4) spin-up sitesor (B) the number density of spin-up sites is
greater than a fixed critical densipy, .
with p given by Eq.(1). Since every site is characterized by ~ This extended Fredrickson-Andersen model has two pa-
the samé, a phase transition takes place at a critical spin-ugameters; the integemg, for nearest neighbors and long-
probability ranged criterionp.. Unlike the mean-field treatment of the
Fredrickson-Andersen model, these parameters are indepen-
pYF=nga/z. (5)  dent and they are not related by H§).
The long-range part of this modgiroperty ZB)] means a
Solving Eq.(1) for T gives glass transition is possible. At temperatures such that
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and insist that/,(p,q) be treated formally as a function of

Tatalad two independent variableg, andq, even though physically
“1“1‘1‘111‘1“ p+q=1. Forn=1,2 we pick
— (p,Q)=p+ (10)
Frozen Melted Frozen $a(p.q)=p+a,
Y2(p,q) =p°+2pq. (11)

FIG. 1. A spin chain with frozen and melted parts. Mobile spins

are highlighted with For longer segments, thg,(p,q) are obtained from a recur-

i - ) sion relation which is a generalization of the recursion rela-
p>pc, there is no restriction of the dynamics. When  ion for the Fibonacci numbers:

<p. some of the spins will be static because of the short-

range conditiorfproperty ZA)]. If ng4 is chosen to be suf- Gos1(0, Q) = Pén(P,q) + P _1(PQ)- (12)

ficiently large, the restricted dynamics at low temperatures

will restrict the number of possible configurations and will ;g generates the
n

. because for a portion of a melted seg-
alter the thermodynamics.

ment of lengthn, the n+1 lattice site will also be in that
melted segment if it is spin ufprobability p;). However, if
One dimension then+ 1 site is spin dowr{probability q.), it will be part of

Simple results for the extended Fredrickson—Anderser%he melted segment if a spin-up site and then a spin-down

model can be obtained on a one-dimensional latticeAf site Is addgd to the segment of length 1. . .
=1 (or 0) the thermodynamics for this model are the same as T(.) obtainis(p,q) for anyn, oné can write the recursion
for free spins, so we consider only the cagg=2. ForT relations for they;,(p,q) in matrix form
<T.andng,=2, the one-dimensional chain of spins is sepa-
rated into “frozen” and “melted” segments, as is illustrated (’/’n+l) :(p pq)( ¥n ) (13)
in Fig. 1. These segments are determined by the configura- n 1 0/)\¥n-a)
tion of the system as it cools through the transition tempera-
ture. Spins in the frozen segments are permanently immobilBigenvalues of the matrix are
(aslong ad<T.). The spins in the melted segments may be
either mobile or immobile. However, allowed spin flips can p
“free up” an immobile spin, so no spin in a melted segment Y==5%
is permanently immobile. The mobile spins in the melted
segment are labeled with an asterisk in Fig. 1. Spin configuthe y, (p,q) must be a sum of powers of these eigenvalues,
rations in each melted segment are restricted to a subset of
all possible configurations. Within this subset, thermal equi-
librium is obtained. Since frozen segments are permanent
below T, temperature variations of the thermal propertie
are determined by the melted segments.

A melted segment is characterized by its lengthLet

2
+pq

1/2

p

5 (14

gn(p,@)=ay] +by" (15

SThe coefficientsa and b are obtained using Eq$10) and
(1) for ¢4 (p,q) and ¢»(p,q), yielding

ni, be the probability that a random site will lie in a melted n-1, ,n-1
segment of lengtim. For a one-spin melted segment (P, q)=(p+q) %)
1= Pede- (7)

+(p2+ 3pq)<v“+l—y“) 16
In Eq. (7), p? represents the probability that the single 2 Y+ Y

melted spin is surrounded by two spin-up sites required
by property 2A) whenng,=2]. The qg‘ represents the prob-
ability that both these neighboring spins are adjacent to
pair of down spins, which is required for them to be in frozen
segments. Similarly, the probability of finding a melted seg-

ment of length 2 is

The functionsy,(p,q) yield more than ther,,. All the

tatistics of the melted segments can be expressed in terms of

ese functions. Each term in tlgg(p,q) polynomial corre-
sponds to a different spin configuration. For example,
¥>(p,q)=p2+2pg means the melted segment of length 2
has one configuration with two spins he p? term) and
) two configurations with one spin up and one spin ddie

m=(Pct+2pcde) 71 (8 2pq term).
Knowledge of they,(p,q) allows us to calculate the ther-

because the two mobile spins can only be in the configuramodynamic properties of this one-dimensional system. The

tions “up-up,” “up-down,” or “down-up.” probability that a site is in a melted segment is obtained
To facilitate our calculation of the internal energy, we using Eq.(9)
write

_ — 2d
= pgqglﬂn(pc ) (9) Pmer= nzl N, chanl Nn(Pe,dc)- (17)
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FIG. 3. The probability for a spin to be within a melted section
Pmeit, the excess internal enerdy,,.es/h, the scattering rati®,
and the residual entrop$(0) as functions o, .

FIG. 2. The internal energy and the heat capacit¢ for a
free-spin chain and fop.=0.2,0.3,0.4.

The form for theys,(p,d) given in Eq.(16) meansP e, can the free spins. Because the change in the free-spin internal

be obtained simply by summing geometric series and simpli- o :
; . ’ energy from the transition temperature to zero temperature is
fying using p.+q.=1. The result,

—2hp.,

—n2 _ 2 3
Pmelt_pc(1+3pc 4pc+pc)’ (18) Uexcess:2hpc_[U(Tc)melt_U(O)melt]-

is shown as a function qgf. as one of the curves in Fig. 3. The excess internal energy can be evaluated exactly. Using
We obtain next the internal energper sit¢ and the spe- Eq. (19

cific heat. These quantities give physical insight into the
properties of this model and its possible relevance to real 21 2. .3

materials. At temperatures equal to and above the transition U(Te)merr= —hpc(1—5pc+4pc+pe)- (21
temperature, the internal energy and heat capacity descri
free spins. Below the transition temperature, only the melte
segments contribute to changes in the internal energy and t
specific heat. Thus we need only consider the temperatur
dependence of the melted segment contribution to the inter-

E—eorTzo, the configuration restrictions for melted segments
’%sans thatu,(0)= —h for odd n andu,(0)=0 for evenn.

o

nal energy, which is U(0) mer= _hn:§d>0 Tn - (22)
U(T)mer= 2 matin(T), (19 simplifying gives
2.2
; - Pcd
where the internal energy of a melted segment of lemgth U(0)mer=—h ﬁ(l_ Pea?). (23)
C

uy(T)=h

J
I(p.0) (p%—qﬁ) #(P.a) (20 Thep, dependence dfl,.c0btained using the above four
equations is shown in Fig. 3.

because the differentiations “count” the number of spin-up _ | N€re is also a residual zero-temperature entr&gg),

and spin-down sites. For example, using E20) and p+q which is associated with the dlsor_der which is frozen into the

=1 givesu,(T)=h(p—q) and u,(T)=h(2p2)/(p?+2pq) system. It can be evaluated starting from

as one expects. The sums needed to oltigif) o must be

done numerically. They converge quickly, and Fig. 2 shows S(T)=S(Te) = [S(Te)meit= S(T)menl - (24)

the temperature dependence of the internal energypfor

=0 (free sping and forp,=0.2, 0.3, 0.4. The corresponding To find S(0), two of theterms in Eq.(24) can be found

specific heat<C(T)=dU(T)/dT are shown in the inset. As exactly

one can see in Fig. 2, the suppression of spin flips dramati-

cally reduces the specific heat below the glass transition. S(Te)=—(pcInpc+acIngc) (25)
Associated with the lower specific heat is an excess inter-

nal energy afT=0, represented by the difference betweenand because segments with an even number of sites have a

the internal energy of the model and the internal energy otloubly degenerate ground state,
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* At high temperatures, the diffuse scattering fractidnis
S(0) mer=1n(2) E w(n) caused by thermal fluctuations. If all the spins could align at
n=ever-0 low temperatures-U/h would be unity and the diffuse
p3q2(2—2p+2p2—p?) scat.tering fraction yvould vanish. Sin_ce the Iowegt value of
=In(2) 1+pd (26)  the internal energy is-h+ U q,cescthe diffuse scattering does

not vanish even wheilt— 0. This zero-temperature diffuse

scattering is not associated with thermal fluctuations. Instead,
it is caused by the disorderlike correlations which are frozen
into the lattice. The diffuse scattering fraction is shown as a

dF function p, in Fig. 3.
S(T) mel= — aT’ 27

The melted-segment contribution to the entropy atan be
obtained numerically in a variety of ways. We used

. . V. GENERALIZATION
where the free energy function for the melted segments is

Many of our results obtained in one dimension apply

F— —Ti Nz 28) more generally. In particular, the modified Fredrickson-
= rneen Anderson model yields a similar phase transition with
given by Eq.(6) on a square latticéwith ngp is 3 or 4 or a
and the partition function for each chain segment is cubic lattice(with nga=4, 5, or §. For T<T, on the square
o Bh .y o phn or cubic lattices, there is a reduced specific heat. This leads
Zp=(e""+e ") n(p,q). (29 {0 an excess internal energy @=0 (compared to free

The residual entropy obtained from these expressions iéplns). Associated with the reduced specific heat is a residual

; N .~ entropy atT=0 given by Eq.(24). There is also a diffuse
shown as a function gb. in Fig. 3. The entropy expression d . . -
in Eq. (24) implies a continuous entropy function even at thescattenng fraction given by Eq0). Unfortunately, numeri

transition temperaturd,. This means we have assumed cal estimates for these quantities are not easy to obtain in two

: " " o or three dimensions.
there is no “collapse” of the system at the transition tem- . . .
. > The phase transitions described here are all associated
perature. Such a collapse would occur if the positions of the . ; . S
o with mean-field theory ofequivalently infinite-ranged ef-
frozen and melted segments were specified. The entropy . T . . )
; e : . fects or(equivalently infinite dimensions. It is logical to ask
continuous because all allowed partitions of the spin chain g )
. . . . if there are reasonable finite-ranged models which would
into frozen and melted segments is included in the countin . ; .
; X ; ; ad to physically reasonable glasslike thermodynamic prop-
of configurations. By assuming the system is the sum of al

: X . : , . . - erties.
gﬁfse'\?; %ZTS\?\;.”%O”S’ this model is translationally invari- Note added in proofWe wish to thank Professor Michael
c-

Despite the formal translational invariance, the extende(ﬁchultz for a critical reading of this manuscript. Dr. Schultz

Fredrickson-Andersen model is disordered in the sense that 1S urged us to remind readers that our calculations describe
. . ; : . 4 simple solvable model—not a real glass. Although the
leads to diffuse elastic scattering. The diffuse scattering oc-

curs because the model has a complicated Spin-spin Correlm_odel was constructed with glass and the glass transition in
. i . P _SPIn-spin %ﬂnd, unavoidable simplifications mean true glasses exhibit
tion function,(c;o;), whereo; is the spin variable for sitg

o=+1 corresponds to spin up;=— 1 corresponds to spin more complex and varied properties than are described by

down, and() denotes a thermodynamic average. The tota ur model. Relaxation time scales_have not been addressed
scattéring probability is the sum of a forwatdr Bragg n our solutions. The sharp_ transition temperature of our

. . . model bears only an approximate relation to experimentally
scattering part and a diffuse scattering part. The total Scattegbserved glass transitions
ing probability is proportional t§o?), where the “bar” in- '
dicates an average over all lattice sites. Assuming the scat-
tering amplitude from a site is proportional 4o the forward ACKNOWLEDGMENTS
scattering probability is proportional tar)?. Letting D de-
note the ratio of the diffuse scattering to the total scattering
and noting thai?=1,
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